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Fluctuation-dissipation relationship in chaotic dynamics

Bidhan Chandra Bag and Deb Shankar Ray*
Indian Association for the Cultivation of Science, Jadavpur, Calcutta 700032, India

~Received 7 January 2000!

We consider a generalN-degree-of-freedom dissipative system that exhibits chaotic behavior. Based on a
Fokker-Planck description associated with the dynamics, we establish that the drift and the diffusion coeffi-
cients can be related through a set of stochastic parameters that characterize the steady state of the dynamical
system in a way similar to the fluctuation-dissipation relation in nonequilibrium statistical mechanics. The
proposed relationship is verified by numerical experiments on a driven double-well system.

PACS number~s!: 05.45.2a, 05.70.Ln, 05.20.2y
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I. INTRODUCTION

Although deterministic in principle, classically chaot
motion is stochastic in nature. Ever since the early numer
study of Chirikovet al., mapping@1# revealed that the mo
tion of a phase-space variable can be characterized b
simple random-walk diffusion equation, attempts have b
made to describe the chaotic motion in terms of Langevin
Fokker-Planck equations@1,2#. It is therefore easy to com
prehend a close connection between classical chaos and
tistical mechanics. Two distinct situations arise in this co
text. The first one concerns whether classical chaos m
serve as a basis for classical statistical mechanics since
ultimate justification of the postulates of statistical mech
ics like Boltzmann hypothesis of molecular chaos, ergod
ity, or the postulate of equala priori probability rests on the
dynamics of each particle@3–5#. The second one concern
the following: Given that the classical chaotic motion is s
chastic, how and to what extent one can realize the form
tion of statistical mechanics for useful description of clas
cal chaos@6–21# keeping in mind that one essentially dea
here with a few-degrees-of-freedom system. The presen
per addresses the second issue.

The emergence of stochastic behavior of the classic
chaotic system is due to the loss of correlation of initia
nearby trajectories. This is reflected in the nature of the la
est Lyapunov exponent@22# whose calculation rests on th
linear equation-of-motion for the separation of these traj
tories. When chaos has fully set in, the time dependenc
the linear stability matrix or Jacobian of the system@23# in
the equation-of-motion in the tangent space can be descr
as a stochastic process since the phase-space variable
have as stochastic variables. In a number of recent studie
have shown@17–21# that this fluctuation of the Jacobian
amenable to a theoretical description in terms of the the
of multiplicative noise. This allows us to realize a number
important results of nonequilibrium statistical mechani
like Kubo relation @17#, fluctuation-decoherence relatio
@18#, exponential divergence of quantum fluctuations@19–
21#, thermodynamically inspired quantities, e.g., entro
production in chaotic dynamics. Based on a Fokker-Pla
description in the tangent space where the drift and the
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fusion coefficients explicitly depend on the phase-space v
ables or dynamical properties of the system, we show th
connection between the two moments in terms of the s
chastic parameters that characterize the long-time limit of
dynamical system can be established in the spirit of
fluctuation-dissipation relation. We verify the theoretic
proposition by numerical experiments on a simple dissipa
system.

The rest of the paper is organized as follows: In Sec. II
introduce a Fokker-Planck description of the dynamical s
tem in the tangent space and identify the drift and diffus
coefficients that are the functions of fluctuations of t
phase-space variables. This is followed by solving
Fokker-Planck equation for the steady-state distribution
quired for the calculation of long-time averages in Sec III.
Sec. IV the dynamical stochastic parameters that characte
the long-time behavior of the system are introduced. The fi
one of them is a well-known stochastic parameter clos
related to Kolmogorov entropy. With the help of these s
chastic parameters we establish a connection between
drift and diffusion coefficients of the Fokker-Planck equati
in the spirit of fluctuation-dissipation relation in nonequilib
rium statistical mechanics. In Sec. V we illustrate the gene
method by an explicit numerical example to verify the the
retical proposition. The paper is concluded in Sec. VI.

II. A FOKKER-PLANCK EQUATION FOR DISSIPATIVE
CHAOTIC DYNAMICS

We are concerned here with a generalN-degree-of-
freedom system whose Hamiltonian is given by

H5(
i 51

N pi
2

2mi
1V~$qi%,t !, i 51, . . . ,N, ~1!

where$qi ,pi% are the coordinate and momentum of thei th
degree of freedom, respectively, which satisfy the gene
form of equations

q̇i5
]H

]pi
and ṗi52

]H

]qi
. ~2!

We now make the Hamiltonian system dissipative by
troducing2gpi on the right-hand side of the second of Eq
1927 ©2000 The American Physical Society
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~2!. For simplicity we assumeg to be the same for all theN
degrees of freedom. By invoking the symplectic structure
the Hamiltonian dynamics as

zi5H qi for i 51, . . . ,N,

pi 2N for i 5N11, . . . ,2N.

and definingI as

I 5F 0 E

2E 2gEG ,
where E is anN3N unit matrix, and 0 is anN3N null
matrix, the equation-of-motion for the dissipative system c
be written as

żi5(
j 51

2N

I i j

]H

]zj
. ~3!

We now consider two nearby trajectories,zi ,żi and zi

1Xi ,żi1Ẋi at the same timet in 2N-dimensional phase
space. The time evolution of separation of these trajecto
is then determined by

Ẋi5(
j 51

2N

Ji j ~ t !Xj ~4!

in the tangent space$Xi%, where

Ji j 5(
k

I ik

]2H

]zk]zj
. ~5!

Therefore, the 2N32N linear stability matrixJ assumes the
following form:

J5F 0 E

M ~ t! 2gEG , ~6!

whereM is anN3N matrix. Note that the time dependenc
of stability matrix J(t) is due to the second derivativ
]2H/]zk]zj , which is determined@23# by the equation-of-
motion ~3!. The procedure for calculation ofXi and the re-
lated quantities is to solve the trajectory equation~3! simul-
taneously with Eq.~4!. Thus when the dissipative syste
described by Eq.~3! is chaotic,J~t! becomes~deterministi-
cally! stochastic due to the fact thatzi ’s behave as stochasti
variables and the equation-of-motion~4! in the tangent space
can be interpreted as a stochastic equation@17–21#.

In the next step we shall be concerned with a stocha
description ofJ(t) or M (t). For convenience we split upM
into two parts as

M5M01M1~ t!, ~7!

whereM0 is independent of variables$zi% and therefore be-
haves as a sure or constant part andM1 is determined by the
variables$zi% for i 51, . . . ,2N. M1 refers to the fluctuating
part. We now rewrite the equation-of-motion,~4! in tangent
space as
f

n

es

ic

Ẋ5JX

5L ~$Xi%,$zi%!, ~8!

whereX andL are the vectors with 2N components. Corre-
sponding to Eq.~7!, L in Eq. ~8! can be split up again to yield

Ẋ5L0~X!1L1~X,$zi~ t !%!, i 51, . . . ,2N. ~9!

Equation~4! indicates that Eq.~8! is linear in$Xi%. Equa-
tions ~4!, ~5!, and~6! express the fact the firstN components
of L1 are zero and the lastN components ofL1 are the
functions of $Xi% for i 51, . . . ,N. The fluctuation inLi

1 is
caused by the chaotic variables$zi% ’s. This allows us to write
the following relation~which will be used later on!,

“X"L
1f~$Xi%!5L1"“Xf~$Xi%!, ~10!

wheref($Xi%) is any function of$Xi%. “X refers to differ-
entiation with respect to components$Xi% ~explicitly Xi
5Dqi for i 51, . . . ,N andXi5Dpi for i 5N11, . . . ,2N).

Note that Eq.~9! by virtue of Eq.~8! is a linear stochastic
differential equation with multiplicative noise where th
noise is due to$zi% determined by equation-of-motion~3!.
This is the starting point of our further analysis.

Equation~9! determines a stochastic process with so
given initial conditions$Xi(0)%. We now consider the mo
tion of a representative pointX in 2N-dimensional tangen
space (X1 , . . . ,X2N) as governed by Eq.~9!. The equation
of continuity, which expresses the conservation of points
termines the variation of density functionf(X,t) in time as
given by

]f~X,t !

]t
52“X"L~ t !f~X,t !. ~11!

ExpressingA0 andA1 as

A052“X"L
0 and A152“X"L

1, ~12!

we may rewrite the equation of continuity as

]f~X,t !

]t
5@A01aA1~ t !#f~X,t !. ~13!

It is easy to recognize that whileA0 denotes the sure par
A1 contains the multiplicative fluctuations through$zi(t)%. a
is a parameter introduced from outside to keep track of
order of fluctuations in the calculations. At the end we p
a51.

One of the main results for the linear equations of t
form with multiplicative noise may now be in order@25#.
The average equation of^f& obeys@P(x,t)[^f&#,
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Ṗ5H A01a^A1&1a2E
0

`

dt^^A1~ t !exp~tA0!

3A1~ t2t!&&exp~2tA0!J P~x,t !. ~14!

The above result is based on second-order cumulant
pansion and is valid when fluctuations are small but ra
and the correlation timetc is short but finite or more pre
cisely

^^A1~ t !A1~ t8!&&50 for ut2t8u.tc . ~15!

We have, in general,̂ A1&Þ0. Here ^^•••&& implies
^^z iz j&&5^z iz j&2^z i&^z j&.

Equation~14! is exact in the limittc→0. Making use of
relation ~12! in Eq. ~14! we obtain

]P

]t
5H 2“"L02a^“"L1&1a2E

0

`

dt^^“"L1~ t !

3exp~2t“"L0!“"L1~ t2t!&&exp~t“"L0!J P.

~16!

The above equation can be transformed into the follow
Fokker-Planck equation (a51) for probability density func-
tion P(X,t), ~the details are given in the Appendix!:

]P~X,t !

]t
52“•FP~X,t !1(

i , j
D i j

]2P

]Xi]Xj
, ~17!

where

F5L01^L1&1Q ~18!

and Q is a 2N-dimensional vector whose components a
defined by

Qj52E
0

`

^^Rj8&&dtd1~t!d2~t!. ~19!

Here the determinants det1(t), det2(t) andRj8 are given by

det1~t!5UdX2t

dX U,
det2~t!5U dX

dX2tU
and

Rj85(
i

L i
1~X,t !

]

]Xi
(

k
Lk

1~X2t,t2t!
]Xj

]Xk
2t

. ~20!

It is easy to recognizeF as an evolution operator. Becau
of the dissipative perturbation we note that divF,0.

The diffusion coefficientDi j in Eq. ~17! is defined as
x-
d

g

Di j 5E
0

`

(
k

^^Li
1~X,t !Lk

1~X2t,t2t!
dXj

dXk
2t &&

3det1~t!det2~t!dt ~21!

We have followed closely van Kampen’s approach@25# a to
generalized Fokker-Planck equation~17!. Before concluding
this section several critical remarks regarding this derivat
need attention:

First, the stochastic processM1(t) determined by$zi% is
obtainedexactlyby solving equations-of-motion~3! for the
chaotic motion of the system. It is therefore necessary
emphasize that we havenot assumedany special property of
noise, such as,M1(t) is Gaussian ord correlated. We reiter-
ate Van Kampen’s emphasis in this approach.

Second, the only assumption made about the noise is
its correlation timetc is short but finite compared to th
coarse-grained time scale over which the average quant
evolve.

Third, we take care of fluctuations up to second ord
which implies that the deterministic noise is not too stron

Equation~17! is the required Fokker-Planck equation
the tangent space$Xi%. Note that the drift and diffusion co
efficients are determined by the phase-space$zi% properties
of the chaotic system and directly depend on the correla
functions of the fluctuations of the second derivatives of
Hamiltonian~5!.

III. THE STEADY-STATE DISTRIBUTION
AND THE CALCULATION OF AVERAGES

In what follows we shall be concerned with the long-tim
limit of the dynamical system. Thus the steady-state dis
bution of the tangent space coordinatesXi( i 51, . . . ,2N) are
especially relevant for the present purpose. To make all th
coordinates dimensionless we use the following transform
tions in Eq.~17!:

t85v8t,

yi5
Xi

d0
for i 51, . . . ,N, ~22!

yi5
Xi

v8d0

for i 5N11, . . . ,2N,

wherev8 is a scaling constant having dimension of recipr
cal of time ~a possible choice is the linearized frequency
the dynamical system! andt8 becomes a dimensionless var
able. d0 is a constant~to be specified later! having the di-
mension of length. The resulting Fokker-Planck equat
~17! reduces to

]P~y,t8!

]t8
52“"F8~y!P1(

i , j
Di j8 ~y!

]2P

]yi]yj
. ~23!

Note that Eq.~23! is independent ofd0 since F(X) is
linear in $Xi% andD(X) is quadratic in$Xi%. Next we con-
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1930 PRE 62BIDHAN CHANDRA BAG AND DEB SHANKAR RAY
sider the stationary state of the system (]P/]t850) and
make use of the following linear transformation~with a2N
51)

U5(
i 51

2N

a i yi ~24!

in Eq. ~23! to obtain the equation for steady-state probabi
distributionPs(U):

]

]U
lUPs~U !1Ds

]2Ps

]U2
50. ~25!

a i-s (i 51, . . . ,2N21) are the constants to be determine
Here

lU52(
i

a iFi8~y! ~26!

and

Ds5(
i , j

Di j8 a ia j , ~27!

and we disregard the time dependence ofD8 under weak
noise approximation, to treatD8 as a constant in the usua
way.

Putting Eq.~24! in Eq. ~26! and comparing the coeffi
cients ofyi on both sides we obtain the 2N algebraic equa-
tion ~for a i , . . . ,a2N21 and l). The set$a i% and l are
therefore known.

The exact steady-state solution,Ps has the well-known
Gaussian form that is given by

Ps~$yi%!5N expS 2
l

2Ds
(
i , j

a ia j yiy j D , ~28!

where N is the normalization constant. Equation~28! ex-
presses the probability distribution of tangent space coo
nates of the dynamical system in the long-time limit. T
important relevant quantity that measures the separatio
initially nearby trajectories when the system has attained
stationary state can be computed by calculating the ave
of

(
i 51

2N

yi
2

Making use of the distribution~28! we obtain

K (
i 51

2N

yi
2L 5

Ds

l (
i 51

2N
1

a i
2

. ~29!

Note that the average as calculated above is a functio
Ds , l, and a i-s, which are dependent on the phase-sp
properties of the dynamical system.
.

i-

of
e
ge

of
e

IV. STOCHASTIC PARAMETERS, CONNECTION
BETWEEN Ds AND l; FLUCTUATION-DISSIPATION

RELATION

Equation~25! is a steady-state Fokker-Planck equation
tangent space with linear drift and constant diffusion coe
cients where the coordinates have been expressed as di
sionless variables$yi%. l and Ds are the first and secon
moments, respectively, of the underlying stochastic proc
Our objective here is seek a connection between the
moments. In standard nonequilibrium statistical mechan
this connection is expressed by the fluctuation-dissipa
relation through temperature, an equilibrium parameter ch
acterizing the equilibrium state. Our approach here is to
low a somewhat similar procedure. This implies that w
search for the stochastic parameters that characterize
long-time limit of the nonlinear dynamical system. We sho
that an appropriate relation betweenDs andl can be estab-
lished through these parameters.

An important parameter proposed many years ago
Casartelliet al. @24# ~a precursor for the largest Lyapuno
exponent used as a measure of regularity or chaoticity o
nonlinear dynamical system! is the long-time average o
ln d(t)/d0, where d0 is the separation of the two initially
nearby trajectories andd(t) is the corresponding separatio
at some timet. To expressd(t) ~having dimension of length!
we write

d~ t !5F(
i 51

N

~Xi !
21 (

i 5N11

2N S Xi

v8
D 2G 1/2

.

d(t) is determined by solving numerically Eqs.~3! and ~4!
simultaneously or their appropriately transformed version
the initial conditionz0 corresponding to Eq.~3!. In going
from the j th to the j 11th step of the iteration in course o
time evolution, any of the components ofX sayXi has to be
initialized asXi

j 05(Xi
j /dj )d0. This initialization implies that

at each step, the iteration starts with same magnitude od0
but the direction ofd0 for stepj 11 is that ofd(t) for the j th
step~considered in terms of the ratioXi

j /dj ). For a pictorial
illustration we refer to Fig. 1 of Ref.@22#. The j th time of
iteration impliest5 jT( j 51,2, . . . ,̀ ) and T is the charac-
teristic time that corresponds to the shortest ensem
averaged period of a nonlinear dynamical system. Thus
lowing Casartelliet al. @24# a stochastic parameter can b
defined by the following time average of lndj /d0 as

sn~ t,z0 ,d0!5
1

n (
j

n

ln
dj

d0
. ~30!

It has been shown@24# that asn→`,sn has a definite
value. For the disordered system it is positive and for
regular system it is zero. The difference ofsn from the larg-
est Lyapunov exponent is also noteworthy. Our object her
to generalize Eq.~30! by defining the other higher-order mo
ments~higher than the firstsn→`). To express these quant
ties we define first

s85 ln
d~ t !

d0
. ~31!
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PRE 62 1931FLUCTUATION-DISSIPATION RELATIONSHIP IN . . .
We now make use of the transformation~22! to express
d(t) as a dimensionless quantity in terms ofs8 as follows:

ln(
i 51

2N

y252s8. ~32!

The method of cumulant expansion on the other hand t
us that the average of the sum ofyi

2 can be written as

K (
i 51

2N

yi
2L 5expS (

m
AmD , m51,2,3, . . . , ~33!

whereAm’s result from cumulants of the stochastic quant
2s8. Am’s are calculated dynamically from the followin
relations:

A15m1 , A25
1

2!
@m22m1

2#,

A35
1

3!
@m323m1m212m1

3#, ~34!

A45
1

4!
@m423m2

224m1m3112m1
2m226m1

4#, etc.,

where

mk5
2k

n (
j 51

n S ln
dj

d0
D k

@k51,2,3,4, . . . #.

In the spirit of Ref.@24# we inquire, whether these moment
cumulants reach their steady-state values in the long-t
limit. We have numerically examined the dependence
mk’s on various parameters. The parameters aren, the time,
d0, the measure of initial separation, the characteristic timT
( j th time of iteration impliest5 jT, j 51,2, . . . ,̀ ). Our ob-
servation is that the limitmk or limit Am asn→` seems to
exist in all cases. We have examined@26# these limits for a
number of test cases, e.g., for Lorentz system, Henon-He
system, and others. In Fig. 1 we exhibit a typical repres
tative long-time behavior of the cumulantsAm (m51 to 4!
for a driven double-well potential system discussed in
next section. It is apparent that they attain their long-ti
limits as n→`. Second, the first two cumulants are mu
higher compared to others The first moment is the stocha
parameter defined by Casartelliet al. @24# as a quantity
closely related to Kolmogorov entropy. We are therefore
to believe that the quantitiesAm’s characterize the long-time
limit or the steady state of a dynamical system.

The relations~33! and~29! can now be combined to giv

Ds5
l

(
i 51

2N

1

a i
2

expS (
m

AmD . ~35!

The above relation is the central result of this paper. T
establishes a connection between the drift and the diffus
coefficients of the Fokker-Planck equation~25! through the
stochastic parameters characterizing long-time behavio
ls

e
f

es
-

e
e

tic

d

is
n

of

the nonlinear dynamical system. It must be emphasized
both the driftl and the diffusionDs coefficients arise from
the deterministic stochasticity implied in the dynamic
equation-of-motion~3!. The relation~35! is therefore remi-
niscent of the familiar fluctuation-dissipation relation.

A few points regarding the relation~35! are in order. It is
important to note that the fluctuation-dissipation relation
conventional nonequilibrium statistical mechanics is va
for a stochastic system for which the noise is internal. T
spiritual root of this relation lies at the dynamic balance b
tween the input of energy into the system from the fluctu
tions of the surrounding and the output of energy from
system due to its dissipation into the surrounding. T
system-reservoir model@27,28# developed over the last few
decades suggests that the coupling between the system
the reservoir is responsible for a common origin of drift a
diffusion. In the present theory this common mechanism
the fluctuations of the phase-space variables~or second de-
rivative of the Hamiltonian! inherent in both the driftl and
the diffusionDs coefficients of the Fokker-Planck equatio
We point out that the relation is still valid for the pur
Hamiltonian system (g50). For this reason the relation~35!
is somewhat formal in contrast to the standard fluctuati
dissipation relation.

V. AN EXAMPLE AND NUMERICAL VERIFICATION

To illustrate the theory developed above, we now cho
a driven double-well oscillator system with Hamiltonian

H5
p1

2

2
1aq1

42bq1
21eq1 cosVt, ~36!

wherep1 andq1 are the momentum and position variables
the system,a andb are the constants characterizing the p
tential, ande includes the effect of coupling constant and t
driving strength of the external field with frequencyV. This
model has been extensively used in recent years for the s
of chaotic dynamics@17,18,29#.

FIG. 1. The first four dimentionless cumulantsA1 , A2 , A3,
and A4 are plotted against dimentionless time for the dynami
system described by Eq.~39!.
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The dissipative equations-of-motion for the tangent sp
variablesX1 and X2 corresponding toq1 and p1 @Eq. ~8!#
read as follows:

d

dt FX1

X2
G5JFX1

X2
G , H Dq15X1

Dp15X2
J , ~37!

whereJ as expressed in our earlier notationz15q1 and z2
5p1 is given by

S 0 1

z~ t !12b 2g D ,

wherez(t)5212az1
2. Equation~37! is thus rewritten as

d

dt S X1

X2
D 5L01L1 ~38!

with

L05S X2

2bX12gX2
D and L15S 0

z~ t !X1
D ,

whereL0 and L1 are the constant and the fluctuating pa
~vectors!, respectively. The fluctuation inL1, i.e., in z(t), is
due to stochasticity of the following chaotic dissipative d
namical equations-of-motion;

ż15z2 and ż252az1
312bz12e cosVt2gz2 . ~39!

The result of Eq.~A5! can then be applied and after som
algebra the Fokker-Planck equation~17! for the dissipative
driven double-well oscillator assumes the following form:

]P

]t
52X2

]P

]X1
2v2X1

]P

]X2
1g

]

]X2
~X2P!1D 21

]2P

]X2]X1

1D 22

]2P

]X2
2

, ~40!

where

D215X1
2E

0

`

^^z~ t !z~ t2t!&&te2gtdt

and

D225X1
2E

0

`

^^z~ t !z~ t2t!&&e2gtdt2X1X2

3E
0

`

^^z~ t !z~ t2t!&&te2gtdt ~41!

with

v252b1c1c2 , c25E
0

`

^^z~ t !z~ t2t!&&te2gtdt,

and c5^z&. ~42!
eThe similarity of Eq.~40! to generalized Kramers’ equatio
cannot be overlooked. This suggests a clear interplay of c
otic diffusive motion and dissipation in the dynamics.

Using the transformation~22!, Eq. ~40! can be written as

]P

]t8
52y2

]P

]y1
2v̄2y1

]P

]y2
1ḡ

]

]y2
~y2P!1D821

]2P

]y2]y1

1D822

]2P

]y2
2

, ~43!

where

v̄25
v2

v82
, ḡ5

g

v8
,

D8215
y1

2~0!

v82 E
0

`

^^z~t8!z~t82t!&&te2gtdt

and

D8225
y1

2~0!

v82 E
0

`

^^z~t8!z~t82t!&&e2gtdt

2
y1~0!y2~0!

v8
E

0

`

^^z~t8!z~t82t!&&te2gtdt

~44!

and the time dependence ofy1 andy2 in the diffusion coef-
ficients have been frozen under weak noise approximatio

Now using the linear transformation~24! in Eq. ~43! we
obtain in the stationary state

]

]U
lUPs1D s

]2Ps

]U2
50, ~45!

where

U5a1y11y2 , lU52a1y22v̄2y11ḡy2 , ~46!

and

Ds5D822, ~47!

where for simplicity it has been assumed thatD821 is much
smaller compared to the Markovian contributionD822.

Comparing the coefficients ofy1 andy2 on both sides of
Eq. ~46! we obtain

la152v̄2 and l52a11ḡ.

Therefore we have

a15
2ḡ2Aḡ214v̄2

2
and l5

ḡ1Aḡ214v̄2

2
. ~48!

Here the negative value ofa1 is taken to makel positive
for a physically allowed solution of the steady-state distrib
tion ~49!. The solution of Eq.~45! is given by
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Ps5N expS 2
l

2Ds
~a1

2y1
212a1y1y21y2

2! D . ~49!

With the help of above distribution the average quantit
in tangent space can be calculated. Thus we have

^y1
21y2

2&5
Ds

l S 1

a1
2

11D . ~50!

The fluctuation dissipation relation~35! can then be ob-
tained by combining Eq.~50! with Eq. ~33! as follows:

Ds5
l

S 1

a1
2

11D expS (
m

AmD . ~51!

l anda1 are to be calculated using Eq.~48!. For these we
require explicit numerical evaluation ofv̄2 as defined in Eqs
~43! and~44!. The dissipative chaotic motion is governed
Eqs. ~37! and ~39!. We choose the following values of th
parameters @29# a50.5,b510,e510,V56.07, and g
50.001. The coupling-cum-field strengthe has been varied
from set to set. We choose the initial conditionsz1(0)5
23.5 andz2(0)50, which ensures strong global chaos. No
that c2 as expressed in Eq.~42! and in the diffusion coeffi-
cients are the integrals over the correlations ofz(t) z(t) is
the fluctuating part of the second derivative of the poten
V(z) and is given byz(t)5212az1

2. To calculate the corre
lation function^^z(t)z(t2t)&& and the averagêz(t)& it is
necessary to determine long-time series inz(t) by numeri-
cally solving the classical equation-of-motion~39!. The next
step is to carry out the averaging over the time series.
further details of the numerical procedure we refer to
earlier work @19–21#. On the other hand the cumulan
Am(m51,2,3,4)@as defined in Eqs.~34! and~35!# are calcu-
lated from Eqs.~37! and ~39! directly. The method has al
ready been outlined in Sec. IV and in Ref.@24#. We then plot
the theoretically calculated values ofDs from the evaluation
of l, a1 and the cumulants for several values of the coupl
constante @Eq. ~36!# and compare them with the diffusio
coefficients obtained from the direct numerical integration
Eqs. ~39! and ~37! with the appropriate transformation~22!
for the corresponding values ofe. The result is shown in Fig
2. It may be noted that the theoretical and numerical res
are in good agreement. The validity of the fluctuatio
dissipation relation as proposed in Eq.~35! is therefore rea-
sonably satisfactory.

VI. CONCLUSIONS

The crucial question of instability of classical motion e
sentially rests on the linear stability matrix or Jacobian m
trix associated with the equations-of-motion. While the l
ear stability analysis around the fixed points is based on
assumption of constancy of this matrix we take full acco
of the time dependence of the quantity in the chaotic reg
by considering it to be a stochastic process, since the p
variables behave stochastically. Based on a Fokker-Pla
description in the tangent space we trace the origin of cha
s

l

or
e

g

f

ts
-

-
-
e
t
e
se
ck
ic

diffusion and drift in the correlation of fluctuations of th
linear stability matrix.

The main conclusions of this study are the following :
~i! We show that a class of dynamical stochastic para

eters that attain their steady-state values in the long-t
limit of the dynamical system may be used to character
the dynamical steady state of the system. The first one
them that was proposed by Casartelliet al. @24# several years
ago as a measure of the chaoticity of the system, is clo
related to Kolmogorov entropy.

~ii ! We establish a connection between the drift and
diffusion coefficients of the Fokker-Planck equation and
dynamical stochastic parameters in the spirit of fluctuati
dissipation relation. The realization of this relation in chao
dynamics therefore carries the message that although c
prising a few degrees of freedom, a chaotic system may
have as a statistical-mechanical system~although in a some-
what different sense!.

The theoretical relations proposed here are generic
N-degree-of-freedom chaotic Hamiltonian system with
without dissipation and have been verified by numeri
analysis of a driven nonlinear dissipative system. We ho
that the present approach will find useful application
searching for the related thermodynamically inspired qua
ties in few-degrees-of-freedom systems.
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APPENDIX: THE DERIVATION OF THE FOKKER-
PLANCK EQUATION

We first note that the operatore(2t“"L0) provides the
solution of the equation@Eq. ~13!, a50#

FIG. 2. The diffusion coefficients calculated numerica
~marked as dark squares! using Eqs.~38! and~39! after transforma-
tion ~22! are compared with theoretically obtained values~marked
as circles! using Eq.~51! for several values of the coupling-cum
external field strengthe ~units are arbitrary!.
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] f ~X,t !

]t
52“X"L

0f ~X,t !. ~A1!

f signifies the ‘‘unperturbed’’ part ofP which can be found
explicitly in terms of characteristic curves. The equation

Ẋ5L0~X! ~A2!

determines for a fixedt a mapping fromX(t50) to X(t),
i.e., X→Xt with inverse (Xt)2t5X. The solution of Eq.
~A1! is

f ~X,t !5 f ~X2t,0!UdX2t

dX U5e@2t“"F0# f ~X,0!, ~A3!

ud(X2t)/d(X)u being a Jacobian determinant. The effect
e(2t“"L0) on f (X) is as

e~2t“"L0! f ~X,0!5 f ~X2t,0!UdX2t

dX U. ~A4!

This simplification in Eq.~16! yields

]P

]t
5H 2“"L02a^“"L1&1a2E

0

`

dtUdX2t

dX U
3^^“"L1~X,t !“2t"L

1~x2t,t2t!&&U dX

dX2tUJ P.

~A5!

Now to express the Jacobian,X2t and“2t in terms of“
and X, we solve Eq.~A2! for short time~this is consistent
with the assumption that the fluctuations are rapid@25#!.

We now write the solution of Eq.~A2! @using Eqs.~4!–
~6!# as follows:

S X1
2t

A

XN
2t
D 52tS XN11

A

X2N

D 1S X1

A

XN

D 5S Ḡ1~X!

A

ḠN~X!
D ~A6!

and

S XN11
2t

A

X2N
2t

D 5egtS XN11

A

X2N

D 2tS GN11~X!

A

G2N~X!
D

5S ḠN11~X!

A

Ḡ2N~X!
D . ~A7!

Here the terms ofO(t2) are neglected. Since the vectorX2t

is expressible as a function ofX we write

X2t5Ḡ~X!, ~A8!

and the following simplification holds good:
f

L1(X2t,t2t)"“2t5L1
†Ḡ~X!,t2t‡"“2t

5(
k

Lk
1@Ḡ~X!,t2t#

]

]Xk
2t

5(
j

(
k

Lk
1@Ḡ~X!,t2t#gjk

]

]Xj
;

j ,k51, . . . ,2N, ~A9!

where

gjk5
]Xj

]Xk
2t

. ~A10!

In view of Eqs.~A6! and ~A7! we note

if j 5k then gjk51, k51, . . . ,N

5e2gt, k5N11, . . . ,2N

if j Þk then gjk}2te2gt or 0.

Thusgjk is a function oft only. Let

Rj5(
k

Lk
1@Ḡ~X!,t2t#gjk . ~A11!

From Eqs.~8!, ~9!, and~A8! we write

Li
1~X2t,t2t!5Li

1@Ḡ~X!,t2t#50 for i 51, . . . ,N.
~A12!

So the conditions~A11!, ~A12!, and~A6! imply that

Rj~X,t2t!5Rj~X1 , . . . ,XN ,t2t! for j 51, . . . ,N,

Rj~X,t2t!5Rj~X1 , . . . ,X2N ,t2t!

for j 5N11, . . . ,2N. ~A13!

We next carry out the following simplifications of thea2

term in Eq.~A5!. We make use of relation~10! to obtain

L1~X,t !"“(
j

Rj

]

]Xj
P~X,t !

5(
i

L i
1~X,t !

]

]Xi
(

j
Rj

]

]Xj
P~X,t !

5(
i , j

L i
1~X,t !Rj

]2

]Xi]Xj
P~X,t !

1(
j

Rj8
]

]Xj
P~X,t !, ~A14!

where

Rj85(
i

L i
1~X,t !

]

]Xi
Rj . ~A15!

Conditions~A12! and ~A13! imply that
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Rj850 for j 51, . . . ,N,

Rj85Rj8~X1 , . . . ,XN ,t2t!Þ0 for j 5N11, . . . ,2N.
~A16!

By Eq. ~A16! one has
or

,

cs

, J

i,

st,
R8"“P~X,t !5“"R8P~X,t !. ~A17!

Making use of Eqs.~10!, ~A9!, ~A14!, and ~A17! in Eq.
~A5! we obtain the Fokker-Planck equation~17!.
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