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Fluctuation-dissipation relationship in chaotic dynamics
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We consider a generdN-degree-of-freedom dissipative system that exhibits chaotic behavior. Based on a
Fokker-Planck description associated with the dynamics, we establish that the drift and the diffusion coeffi-
cients can be related through a set of stochastic parameters that characterize the steady state of the dynamical
system in a way similar to the fluctuation-dissipation relation in nonequilibrium statistical mechanics. The
proposed relationship is verified by numerical experiments on a driven double-well system.

PACS numbegps): 05.45—a, 05.70.Ln, 05.26-y

[. INTRODUCTION fusion coefficients explicitly depend on the phase-space vari-
ables or dynamical properties of the system, we show that a
Although deterministic in principle, classically chaotic connection between the two moments in terms of the sto-
motion is stochastic in nature. Ever since the early numericathastic parameters that characterize the long-time limit of the
study of Chirikovet al, mapping[1] revealed that the mo- dynamical system can be established in the spirit of the
tion of a phase-space variable can be characterized by fluctuation-dissipation relation. We verify the theoretical
simple random-walk diffusion equation, attempts have beefproposition by numerical experiments on a simple dissipative
made to describe the chaotic motion in terms of Langevin ofystem.
Fokker-Planck equationigl,2]. It is therefore easy to com- The rest of the paper is organized as follows: In Sec. Il we
prehend a close connection between classical chaos and statroduce a Fokker-Planck description of the dynamical sys-
tistical mechanics. Two distinct situations arise in this contem in the tangent space and identify the drift and diffusion
text. The first one concerns whether classical chaos ma?OGfﬁCientS that are the functions of fluctuations of the
serve as a basis for classical statistical mechanics since tfase-space variables. This is followed by solving the
ultimate justification of the postulates of statistical mechanFokker-Planck equation for the steady-state distribution re-
ics like Boltzmann hypothesis of molecular chaos, ergodic.QUired for the calculation of Iong-time averages in Sec lll. In
ity, or the postulate of equal priori probability rests on the Sec. IV the dynamical stochastic parameters that characterize
dynamics of each particli8—5]. The second one concerns the long-time behavior of the system are introduced. The first
the following: Given that the classical chaotic motion is sto-one of them is a well-known stochastic parameter closely
chastic, how and to what extent one can realize the formula€lated to Kolmogorov entropy. With the help of these sto-
tion of statistical mechanics for useful description of classi-chastic parameters we establish a connection between the
cal chaog6—21] keeping in mind that one essentially deals drift and diffusion coefficients of the Fokker-Planck equation

here with a few-degrees-of-freedom system. The present péﬂ the spirit of fluctuation-dissipation relation in nonequilib-
per addresses the second issue. rium statistical mechanics. In Sec. V we illustrate the general

The emergence of stochastic behavior of the classicallynethod by an explicit numerical example to verify the theo-
chaotic system is due to the loss of correlation of initially retical proposition. The paper is concluded in Sec. VI.
nearby trajectories. This is reflected in the nature of the larg-

est Lyapunov exponeri22] whose calculation rests on the || A FOKKER-PLANCK EQUATION FOR DISSIPATIVE

Iinc_aar equation-of-motion for the §eparati_on of these trajec- CHAOTIC DYNAMICS
tories. When chaos has fully set in, the time dependence of _
the linear stability matrix or Jacobian of the systg28] in We are concerned here with a genefdldegree-of-

the equation-of-motion in the tangent space can be describdteedom system whose Hamiltonian is given by
as a stochastic process since the phase-space variables be-

have as stochastic variables. In a number of recent studies we N p? )

have showr{17—21] that this fluctuation of the Jacobian is szl o TVAALY, i=1,.. N, (1)
amenable to a theoretical description in terms of the theory - '

of multiplicative noise. This allows us to realize a number of
important results of nonequilibrium statistical mechanics
like Kubo relation [17], fluctuation-decoherence relation
[18], exponential divergence of quantum fluctuatiga9—
21], thermodynamically inspired quantities, e.g., entropy

production in chaotic dynamics. Based on a Fokker-Planck q:ﬁ and p,=— ﬁ
description in the tangent space where the drift and the dif- oo ' aq;”

where{q;,p;} are the coordinate and momentum of flie
'degree of freedom, respectively, which satisfy the generic
form of equations

)

We now make the Hamiltonian system dissipative by in-
*Email address: pcdsr@mahendra.iacs.res.in troducing— yp; on the right-hand side of the second of Eqs.
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(2). For simplicity we assume to be the same for all thi X=JX
degrees of freedom. By invoking the symplectic structure of
the Hamiltonian dynamics as =L{Xit iz}, ®

7= [ Gi for le’ SRR whereX andL are the vectors with ¥ components. Corre-
" lpion for i=N+1,... 2N, sponding to Eq(7), L in Eq. (8) can be split up again to yield

and definingl as )
X=L°X)+L (X {z(1)}), i=1,...,N. 9
0 E

| =
—-E —9E

Equation(4) indicates that Eq(8) is linear in{X;}. Equa-
tions (4), (5), and(6) express the fact the firdt components
of L! are zero and the lastl components ofL! are the
functions of{X;} for i=1,... N. The fluctuation inL} is
caused by the chaotic variablgg}’s. This allows us to write

where E is anNXN unit matrix, and 0 is arNXN null
matrix, the equation-of-motion for the dissipative system ca
be written as

N the following relation(which will be used later on
Zi:jzllijo_'_zj. (3)
VL p({ X)) =L Vyp({Xi}), (10

We now consider two nearby trajectorias,,ii and z

+Xi,zi+X; at the same time in 2N-dimensional phase \here ¢({X;}) is any function of{X;}. Vy refers to differ-
space. The time evolution of separation of these trajectoriegntiation with respect to componenfX;} (explicitly X;
is then determined by =Aq; fori=1,... N andX;=Ap; fori=N+1,...,2N).
Note that Eq(9) by virtue of Eq.(8) is a linear stochastic

X-=§ 3 (DX @) differential equation with multiplicative noise where the
et ] noise is due tdz} determined by equation-of-motiof3).
This is the starting point of our further analysis.
in the tangent spacgX;}, where Equation(9) determines a stochastic process with some
given initial conditions{X;(0)}. We now consider the mo-
9°H tion of a representative poirX in 2N-dimensional tangent
Jij :; 'ikm- 5 space K1, ... ,Xy\) as governed by Eq9). The equation

of continuity, which expresses the conservation of points de-
termines the variation of density functiab(X,t) in time as

Therefore, the RIX 2N linear stability matrixJ assumes the ™=
given by

following form:

0 E
M(t) —+vE

®) IB(X,t)
at

=—Vy-L(t)p(X,1). (11)

whereM is anNX N matrix. Note that the time dependence

of stability matrix J(t) is due to the second derivative ExpressingA, andA; as

azH/azkaz,-, which is determined23] by the equation-of-

motion (3). The procedure for calculation of; and the re-

lated quantities is to solve the trajectory equatiBnsimul-

taneously with Eq.4). Thus when the dissipative system

described by Eq(3) is chaotic,J(t) becomegdeterministi- ¢ may rewrite the equation of continuity as

cally) stochastic due to the fact thats behave as stochastic

variables and the equation-of-moti®#) in the tangent space

can be interpreted as a stochastic equdtioh-21]. dp(X,t)
In the next step we shall be concerned with a stochastic at

description ofJ(t) or M(t). For convenience we split ugd

into two parts as

Apg=—VyL® and A;j=—VyL%, (12

=[Aot aAi(D)]p(X1). (13

It is easy to recognize that whike, denotes the sure part,
M=Mgy+M;q(t), (7)  Aq contains the multiplicative fluctuations through(t)}. «
is a parameter introduced from outside to keep track of the

whereMy is independent of variabldg;} and therefore be- order of fluctuations in the calculations. At the end we put
haves as a sure or constant part &dis determined by the a=1.
variables{z} fori=1,...,2N. M, refers to the fluctuating One of the main results for the linear equations of the
part. We now rewrite the equation-of-motio@) in tangent  form with multiplicative noise may now be in ordé25].
space as The average equation ¢fb) obeys[P(x,t)=(¢)],
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b

Ao+ a(A1)+a2fO dr((Ay(t)exp 7Aq) Dii:jwzk: (L OLEX 7= ) ddx>§r>>
0 k

X Aq(t— T)>>exp(—TAo)] P(x,t). (14 X deg(r)dep(n)dr (22)

We have followed closely van Kampen'’s approd2B] a to
The above result is based on second-order cumulant eXeneralized Fokker-Planck equatity). Before concluding
pansion and is valid when fluctuations are small but rapicthis section several critical remarks regarding this derivation
and the correlation time is short but finite or more pre- npeed attention:
cisely First, the stochastic proces,(t) determined by{z} is
obtainedexactlyby solving equations-of-motiofB) for the
((A(DAL(t")))=0 for |t—t'|>7.. (15 chaotic motion of the system. It is therefore necessary to
) o emphasize that we havet assumeany special property of
We have, in general(A;)#0. Here ((---)) implies  ngise, such adyl,(t) is Gaussian ob correlated. We reiter-

(&g =(&ig) =& o _ ate Van Kampen’s emphasis in this approach.
Equation(14) is exact in the limitr;—0. Making use of Second, the only assumption made about the noise is that
relation(12) in Eq. (14) we obtain its correlation timer, is short but finite compared to the
coarse-grained time scale over which the average quantities
®. —V-LO—a(V-Ll>+a2fwdr<(V-Ll(t) evolve.
gt 0 Third, we take care of fluctuations up to second order,

which implies that the deterministic noise is not too strong.
U O\ 1+ 10 Equation(17) is the required Fokker-Planck equation in
XX = 7V V-LA(t=7)))exp(rV L )} P. the tangent spacgX;}. Note that the drift and diffusion co-
efficients are determined by the phase-sp@agk properties
of the chaotic system and directly depend on the correlation
gﬁnctions of the fluctuations of the second derivatives of the
amiltonian(5).

(16)

The above equation can be transformed into the followin
Fokker-Planck equatioma(=1) for probability density func-
tion P(X,t), (the details are given in the Appendtix

Ill. THE STEADY-STATE DISTRIBUTION

(7P(X,t) 192P AND THE CALCULATION OF AVERAGES
==V FP(Xt)+2 Dijso—o XX (17)

In what follows we shall be concerned with the long-time
limit of the dynamical system. Thus the steady-state distri-
bution of the tangent space coordinaxg6 =1, ... ,2N) are
especially relevant for the present purpose. To make all these
coordinates dimensionless we use the following transforma-

. . . tions in Eq.(17):
and Q is a 2N-dimensional vector whose components are a-(7)

where

F=Lo+(LH+Q (18)

defined by =o't
- [Cwramaindan. a9 X
0 Yi=g for i=1,... N, (22
0
Here the determinants dét), det(r) and Rj’ are given by
X
-7 Y= ,' for i=N+1,..., 2N,
det(7)= ax | w'do
wherew' is a scaling constant having dimension of recipro-
q dXx cal of time (a possible choice is the linearized frequency of
eb(r)= ax-7 the dynamical systejrand 7’ becomes a dimensionless vari-

able.d, is a constanfto be specified latérhaving the di-
mension of length. The resulting Fokker-Planck equation

and
(17) reduces to
J oX;
RI=S LHX D) 7o 3 LEX t-m) = (20) P(y, ) P
. P X IXy — = VF y)P+E DY) 5y oy v (23
T

It is easy to recognizE as an evolution operator. Because
of the dissipative perturbation we note that @wO0. Note that Eq.(23) is independent ofly since F(X) is
The diffusion coefficienD;; in Eq. (17) is defined as linear in{X;} andD(X) is quadratic in{X;}. Next we con-
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sider the stationary state of the syste@P(d7'=0) and IV. STOCHASTIC PARAMETERS, CONNECTION
make use of the following linear transformatiowith a,y BETWEEN Ds AND A; FLUCTUATION-DISSIPATION
=1) RELATION

Equation(25) is a steady-state Fokker-Planck equation in
tangent space with linear drift and constant diffusion coeffi-
cients where the coordinates have been expressed as dimen-
sionless variablegy;}. A and Ds are the first and second

in Eq. (23) to obtain the equation for steady-state probability™oments, respectively, of the underlying stochastic process.

2N
U:igl a;y; (24

distribution Py(U): Our objective here is seek a connection between the two
moments. In standard nonequilibrium statistical mechanics
p 2p this connection is expressed by the fluctuation-dissipation
—AUP4(U)+D——=0. (25)  relation through temperature, an equilibrium parameter char-
U gu? acterizing the equilibrium state. Our approach here is to fol-
low a somewhat similar procedure. This implies that we
a;-s (i=1,...,2N—1) are the constants to be determined.search for the stochastic parameters that characterize the
Here long-time limit of the nonlinear dynamical system. We show

that an appropriate relation betwe®g and\ can be estab-
lished through these parameters.
KU:-Z aiF{(y) (26) An important parameter proposed many years ago by
! Casartelliet al. [24] (a precursor for the largest Lyapunov
exponent used as a measure of regularity or chaoticity of a
and nonlinear dynamical systenis the long-time average of
Ind(t)/dy,, whered, is the separation of the two initially

_ ;oo nearby trajectories and(t) is the corresponding separation
Ds .2, Djaia;, @7) at some time. To expressi(t) (having dimension of lengih
we write
and we disregard the time dependencel®f under weak N N 911/
noise approximation, to tred®’ as a constant in the usual X;
way, P dv=| > X2+ > (—) l .
. =1 i=N+1 \ @

Putting Eq.(24) in Eqg. (26) and comparing the coeffi-
cients ofy; on both sides we obtain theNalgebraic equa- d(t) is determined by solving numerically E¢) and (4)

tion (for «;,...,ay-1 and\). The set{e;} and X are  gimyltaneously or their appropriately transformed version for
therefore known. _ the initial conditionz, corresponding to Eq(3). In going
The exact steady-state solutioR; has the well-known  fom the jth to thej+1th step of the iteration in course of
Gaussian form that is given by time evolution, any of the components X¥fsayX; has to be
\ initialized asxfoz(x{/dj)do. This initialization implies that
) — N v at each step, the iteration starts with same magnituds, of
P({yi)=N eXp( 2D, .2, aayY|s (28 ihe direction ofi, for stepj + 1 is that ofd(t) for the|th

step(considered in terms of the rati/d;). For a pictorial
where N is the normalization constant. Equati¢®8) ex- illustration we refer to Fig. 1 of Ref.22]. The jth time of
presses the probability distribution of tangent space coordiiteration impliest=jT(j=1,2,...¢) andT is the charac-
nates of the dynamical system in the long-time limit. Theteristic time that corresponds to the shortest ensemble-
important relevant quantity that measures the separation @éfveraged period of a nonlinear dynamical system. Thus fol-
initially nearby trajectories when the system has attained théowing Casartelliet al. [24] a stochastic parameter can be
stationary state can be computed by calculating the averagiefined by the following time average ofdvd, as
of

1 d
2N on(t.20,do)= = ; |nd—0. (30)

It has been showh24] that asn—«,o,, has a definite
value. For the disordered system it is positive and for the
regular system it is zero. The difference®f from the larg-

N N est Lyapunov exponent is also noteworthy. Our object here is
< D y2> Dso 1 (29 0 generalize Eq30) by defining the other higher-order mo-

i ' ments(higher than the first,_,..). To express these quanti-
ties we define first

Note that the average as calculated above is a function of dt
Ds, N\, and «;-s, which are dependent on the phase-space a’:ln(—). (31)
properties of the dynamical system. do
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We now make use of the transformati@@®) to express R
d(t) as a dimensionless quantity in termsaf as follows: A
2N 1.5 2
N>, y2=20". (32)
i=1 —_
<<l' 10-
The method of cumulant expansion on the other hand tells o
: <
us that the average of the sumydf can be written as -
< 0.51
2N — A1
5 <
> v )=exg > Anl, m=123..., (33 ~
i=1 m 0.0 A
Mg e T T T T i’.‘.:.::.
whereA,,’s result from cumulants of the stochastic quantity o A
20'. A,’s are calculated dynamically from the following 0.5 - T —2 -
P 0.0  2.0x104 4.0x104 6.0x10*4 8.0x10%
relations:
t‘
A;=myg, A2=—'[m2—m§], FIG. 1. The first four dimentionless cumulams, A;, A,
2! and A, are plotted against dimentionless time for the dynamical
1 system described by E¢39).
Az=r7[mg—3m;m,+2m?], (34) _ _ _
3! the nonlinear dynamical system. It must be emphasized that

both the driftA and the diffusionDg coefficients arise from
the deterministic stochasticity implied in the dynamical
equation-of-motion(3). The relation(35) is therefore remi-
niscent of the familiar fluctuation-dissipation relation.
where A few points regarding the relatiof85) are in order. It is
important to note that the fluctuation-dissipation relation in
2k 2 i K conventional nonequilibrium statistical mechanics is valid
M= Zl (lnd_) [k=1234...]. for a stochastic system for which the noise is internal. The
= 0 spiritual root of this relation lies at the dynamic balance be-

1
Ag= [ my—3m3— 4mymg-+ 12mim, —6m], etc,

In the spirit of Ref[24] we inquire, whether these moments/ IWeen the input of energy into the system from the fluctua-

cumulants reach their steady-state values in the long-timfions of the surrounding and the output of energy from the

limit. We have numerically examined the dependence ofystem due to_ its_dissipation into the surrounding. The
m,’s on various parameters. The parametersrarte time, system-reservoir mod¢R7,28 developed over the last few

do, the measure of initial separation, the characteristic ime decades suggests that _the coupling between _the system and
(jth time of iteration implieg=jT,j=1,2 2. Our ob- the reservoir is responsible for a common origin of drift and

servation is that the limiin, or limit A, asn—o» seems to ?r:ffufflort\. I? the pfr(ter?enththeory this Com%‘;‘s mechgntljsm IS
exist in all cases. We have examingh] these limits for a € fluctuations or the phase-space variafssecond de-

number of test cases, e.g., for Lorentz system, Henon-HeiIervati\.'e Of the Hamilt_or_1iahinherent in both the drifh anq
system, and others. In Fig. 1 we exhibit a typical represen'E e diffusionD; coefficients of the Fokker-Planck equation.
tative long-time behavior of the cumulans, (m=1 to 4 We point out that the relation is still valid for the pure

for a driven double-well potential system discussed in thé—|amiltonian system{=0). For this reason the relati¢85)

next section. It is apparent that they attain their long-time'S somewhat formal in contrast to the standard fluctuation-

limits as n—~. Second, the first two cumulants are muchd'ss'p"’ltlon relation.

higher compared to others The first moment is the stochastic

parameter defined by Casartedit al. [24] as a quantity V. AN EXAMPLE AND NUMERICAL VERIFICATION

closely related to Kolmogorov entropy. We are therefore led )

to believe that the quantities,,’s characterize the long-time 10 illustrate the theory developed above, we now choose
limit or the steady state of a dynamical system. a driven double-well oscillator system with Hamiltonian

The relationg33) and(29) can now be combined to give
2
) H=&+aq‘1‘—bq§+ €q; cost, (36)

(35) 2

= wherep; andq, are the momentum and position variables of
the systema andb are the constants characterizing the po-
The above relation is the central result of this paper. Thigential, ande includes the effect of coupling constant and the
establishes a connection between the drift and the diffusiodriving strength of the external field with frequen®y This
coefficients of the Fokker-Planck equati®b) through the model has been extensively used in recent years for the study
stochastic parameters characterizing long-time behavior aéf chaotic dynamic$17,18,29.
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The dissipative equations-of-motion for the tangent spacd@he similarity of Eq.(40) to generalized Kramers’ equation
variablesX; and X, corresponding tay; and p; [Eq. (8)]  cannot be overlooked. This suggests a clear interplay of cha-

read as follows: otic diffusive motion and dissipation in the dynamics.
Using the transformatio22), Eq. (40) can be written as
d| Xy _J{Xl [A%:Xl a7 5
dt[X,) TIXp)" |Api=X,)" P__ P = P I e, O
PR A VAR YA A v
whereJ as expressed in our earlier notatinp=q, and z,
=p, is given by 9’P
+D' o, (43
0 1 ay2
(g(t)+2b —y)’ where
where{(t)= —12az. Equation(37) is thus rewritten as — w?® — 7
__,2! '}’_ ;1
d | Xy
—| |=Lo+L? (39
dti X, y3(0) (= .
D'y=—7 f (L") —1)))yre dT
with w = Jo
) and
Loz( ) and L1=( )
2bX;— ¥X, (X, y3(0) (= -
. D'yp=—7 J (L)' = 7))ye dr
whereL? andL! are the constant and the fluctuating parts @ 0
(vectors, respectively. The fluctuation i, i.e., in£(t), is .
due to stochasticity of the following chaotic dissipative dy- B Y1(0)Y2(0)f (L) (7 - 7))yre 7 dr
namical equations-of-motion; ' 0
(44)

-Z]_: Zy and -22: - az§+ 2bZl— € cosQt— vZ,. (39)
) and the time dependence pf andy, in the diffusion coef-
The result of Eq(A5) can then be applied and after some ficients have been frozen under weak noise approximation.

algebra the Fokker-Planck equati¢ti7) for the dissipative Now using the linear transformatioi24) in Eq. (43) we
driven double-well oscillator assumes the following form: gptain in the stationary state

P « aP 25 P I D)4 D 9?P P 9P,
Tt Xegx gk 7(9_X2( 2P) 21 55%,0%, m"UP5+DSﬁU2:O' (45)
3P
+D 25 (40) where
U=aiyi+y,, N\U=—ayy,—0%yi+yy,, (46)
where
and
Dy1= XEL (e)(t=m)))yre”dr Ds=D'5,, (47)
where for simplicity it has been assumed t#at,; is much
and smaller compared to the Markovian contributiot,,.
Comparing the coefficients gf; andy, on both sides of
* oy EqQ. (46) we obtain
D=t [ (e att-m)e X, (48
Na;=—w? and A= —a,+y.
X jo ((Lt¢(t=m))re"77dr (4 Therefore we have
with —y= NP +4e° Y +40?
a=——F—— and A\=—F—. (49
2 2
w?=2b+Cc+Cy, Cp= fo ((¢(¢(t—7)))re”7dr, Here the negative value of; is taken to maké. positive

for a physically allowed solution of the steady-state distribu-
and c=(¢{). (42 tion (49). The solution of Eq(45) is given by
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N
Ps=N exp( —5p (alyit2ay1y,+y)) | (49) 30-
S
With the help of above distribution the average quantities 25 o
in tangent space can be calculated. Thus we have
Dyl 1 w 201
(Y2+y2y=—2| = +1]. (50) =
. . . . . 15-
The fluctuation dissipation relatiof85) can then be ob-
tained by combining Eq50) with Eq. (33) as follows: g/
104
A’ T T T L} T T T T
DS:—l exp > Ayl (51) 4 6 8 10 12 14 16 18 20 22
m
—+1 2
o] )

FIG. 2. The diffusion coefficients calculated numerically

\ anda; are to be calculated using E@8). For these we (marked as dark squanessing Eqs(38) and(39) after transforma-
tion (22) are compared with theoretically obtained valdsmrked

require explicit numerical evaluation of’ as defined in EQS. o circles using Eq.(51) for several values of the coupling-cum-
(43) and(44). The dissipative chaotic motion is governed by o iormal field strengtla (units are arbitrary

Egs. (37) and (39). We choose the following values of the
parameters[29] a=0.5,b=10,e=10,Q2=6.07, and y o o ] )
—0.001. The coupling-cum-field strengéhhas been varied diffusion and drift in the correlation of fluctuations of the

from set to set. We choose the initial conditiong0)= linear stability matrix. _ _
—3.5 andz,(0)=0, which ensures strong global chaos. Note The main conclusions of this study_are the foIIO\_/vmg :
thatc, as expressed in Eg42) and in the diffusion coeffi- (i) We show that a class of dynamical stochastic param-

cients are the integrals over the correlations/€) ¢(t) is eters that attain their steady-state values in the Iong—ti_me
the fluctuating part of the second derivative of the potentiafiMit of the dynamical system may be used to characterize
V(z) and is given by(t) = —12azf. To calculate the corre- the dynamical steady state of the s_ystem. The first one of
lation function((Z(t)¢(t—7))) and the averagél(t)) it is them that was proposed by Cas_ar_tetllal.[24] several years
necessary to determine long-time serieg/{t) by numeri- ago as a measure of the chaoticity of the system, is closely
cally solving the classical equation-of-moti¢89). The next related to Kolmogorov entropy.

step is to carry out the averaging over the time series. For (i) We establish a connection between the drift and the

further details of the numerical procedure we refer to thed|ffu5|on coefficients of the Fokker-Planck equation and the

earlier work [19—-21. On the other hand the cumulants d_yngmic_:al stochastic parameters in the_ spirit Qf fI_uctuatio_n-
A (m=1,2,3,4)[as defined in Eq434) and(35)] are calcu- d|SS|pa_t|on relation. The _reahzatlon of this relation in chaotic
IaTed from Eqs.(37) and (39) directly. The method has al- dyngmlcs therefore carries the message 'Fhat although com-
ready been outlined in Sec. IV and in RE24]. We then plot prising a few degrees of freedom, a chaotic system may be-

the theoretically calculated values Bf from the evaluation have as a statistical-mechanical syst@ithough in a some
. what different senge
of N\, @, and the cumulants for several values of the coupling . . .
. e The theoretical relations proposed here are generic for
constante [Eq. (36)] and compare them with the diffusion . o i
. ; . o ) N-degree-of-freedom chaotic Hamiltonian system with or
coefficients obtained from the direct numerical integration of

; s : without dissipation and have been verified by numerical
Egs. (39) and (37) \.N'th the aproprlate transformaﬂg(ﬁZ)_ analysis of a driven nonlinear dissipative system. We hope
for the corresponding values ef The result is shown in Fig.

2. It may be noted that the theoretical and numerical resultghalt the present approach will find useful application in

. o .~ "Searching for the related thermodynamically inspired quanti-
are in good agreement. The \{alld|ty Qf the quctuatlon-tieS in few-degrees-of-freedom systems.
dissipation relation as proposed in E85) is therefore rea-
sonably satisfactory.
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of the time dependence of the quantity in the chaotic regime PLANCK EQUATION

by considering it to be a stochastic process, since the phase

variables behave stochastically. Based on a Fokker-Planck We first note that the operate(— 7V-L°) provides the
description in the tangent space we trace the origin of chaotisolution of the equatiofiEg. (13), «=0]
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If(X,)

VL0
- VLo (X,1).

(A1)

f signifies the “unperturbed” part oP which can be found
explicitly in terms of characteristic curves. The equation

X=L%X) (A2)

determines for a fixed a mapping fromX(7=0) to X(7),
i.e., X—=X7 with inverse ")~ "=X. The solution of Eqg.
(Al) is

—t

—e[—tV-F,]f(X,0), (A3)

dXx

d
f(X,t)=f(Xt,0)‘

[d(X~Y/d(X)| being a Jacobian determinant. The effect of

e(—tV-L% onf(X) is as

dx!
dx |’

e(—tV-LOf(X,00=f(X"0) (A4)

This simplification in Eq.(16) yields

aP
ot

dax 7
dx

= —V'Lo—a<V'Ll>+a2f dr
0

XAV-LH XDV LA (X7t = 1)) Ve

C
(A5)

Now to express the JacobiaX; "andV _ . in terms ofV
and X, we solve Eq.(A2) for short time(this is consistent
with the assumption that the fluctuations are rdj@l).

We now write the solution of EqA2) [using Egs.(4)—
(6)] as follows:

X17 Xn+1 X1 G1(X)
N . (A6)
XN Xon XN Gn(X)
and
XN+1 Xn+1 Gn+1(X)
=7 — T :
Xon Xon Gon(X)
Gr+1(X)
= : . (A7)
Gan(X)

Here the terms oD(7?) are neglected. Since the vechr”
is expressible as a function &fwe write
X~ "=G(X), (A8)

and the following simplification holds good:
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LY(X 7t=1)-V_,=LG(X),t-7]-V_,

— J
=2 LHG(X),t—1]
k d

-T

k
_ T r e O
—; Zk Ll G(X),t—7]gjk 7%

ik=1,... N, (A9)

where

X
X"

gik= (A10)

In view of Egs.(A6) and (A7) we note
if j=k then g;=1, k=1,...] N
=e 77, k=N+1,..., N

if j#k then gjx—7e”?" or 0.

Thusgy is a function of7 only. Let

R,:; LI G(X),t— 71« - (A11)

From Egs.(8), (9), and(A8) we write

LY X " t—7)=LYG(X),t—7]=0 for i=1,...N.

(A12)

So the conditiongAll), (A12), and(A6) imply that
R(X,t=7)=Rj(Xy, ... Xy, t—7) for j=1,... N,

Rj(X,t—T)sz(Xl, . ,XZN,t_T)

for j=N+1,...,2N. (A13)

We next carry out the following simplifications of the?
term in Eqg.(A5). We make use of relatioiL0) to obtain

J

3 PO

LY(X,1)-V> R
J

N il 7
_Ei LY(X,t) X ; R,-axj P(X,t)

02
- 1 .
_2 Li (X, DR %X P(X,t)

J
+2, Rl —P(X1),
2

(A14)
where
R/=> LYXt R Al5
=2 i(,)ﬁxi i (A15)

Conditions(A12) and (A13) imply that
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R/=0 for j=1,...N, R"-VP(X,t)=V-R'P(X,t). (AL7)
R{=Ri(Xy, ... Xy,t=7)#0 for j=N+1,... 2.
(A16) Making use of Eqs(10), (A9), (A14), and (A17) in Eq.
By Eq. (AL6) one has (A5) we obtain the Fokker-Planck equati@hi).
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